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� Learning Objectives

• Define the concept of a probability.

• Learn Bayes’ rule and other rules for manipulating probabilities.

1 Motivation

It turns out that the notion of probability provides us with a powerful method to formal-
ize the concept of uncertainty and allows us to reason about many types of uncertainty
in a unified way. Formalizing uncertainty using probability theory will enable us to solve
robotics challenges in a principled and robust manner.

• make explicit our assumptions about the uncertainties present within our sensor data
and the impact of these uncertainties on predictions based on that data.

• allow us to quantify confidence in our predictions

2 Probability

Hopefully the previous section left you feeling excited to learn more about the theory that
underlies these big ideas. Next, we’ll take our first steps towards learning this theory.

2.1 Intuition

Most of us are used to thinking that events can be probabilistic, that is we can attach
some probability to whether or not they occur. Take for example flipping a coin. We
could think of the event that the coin comes up heads as having probability 0.5. That is,
there is an even chance that it happens versus doesn’t happen. Further, we can say that
an event is observable if we are able to directly observe whether it occurred. For instance,
whether a coin comes up heads is an observable event since you can ultimately observe
the outcome of the flip. In contrast, some events would be considered unobservable if
they are unable to be directly ascertained by human senses. A classic example of this
would be whether a scientific theory is true or not. It is impossible to directly observe
whether the theory is true, but you might be able to observe events that are consistent or
inconsistent with the theory.
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Exercise 1 (10 minutes)

Come up with 3ish examples of observable events that are probabilistic in na-
ture. For each event, provide the probability that it occurs or explain what factors
would determine the probability. Some potential ideas to get you going: sporting
events, elections, weather, etc.

� Solution
Here are some possible ideas.

• The event The Nationals win the 2019 MLB World Series is an observ-
able event (we will ultimately find out whether or not this happens).
The probability of this event will depend on the quality of their oppo-
nent (currently this is either the Yankees or the Astros, both of whom
would be favored in the series) and other factors (such as home field
advantage).

• The event the movie Joker wins the Academy Award for Best Pictures is
an observable event. The probability that it occurs will depend on the
amount of money spent promoting it to academy members, the quality
of other movies that are released, etc.

2.2 Formal Definition

Next, we’ll define more formally1 what we mean by a probability. Having this formal 1 this is not the full definition
of a probability space used
in modern mathematics. For
the purposes of most people
that use probability theory
on actual problems, the full
definition is needlessly complex.
For instance, as a grad student
I (Paul) never saw the full
definition in any of my ML
courses. Use the following link
if you want a more in-depth
discussion of the parts of the
formal definition that are tricky
(our expectation is that you
won’t want this discussion!).

definition will give us the ability to determine useful rules for manipulating and reason-
ing about probabilities. To define the concept of a probability, we’ll need to specify two
ingredients.

2.3 Events

An event is something that may or may not occur in response to some random process.
For instance, we could define the event that a coin comes up heads when it is flipped. We
often use capital letters to indicate events. Since we’ve been using capital letters to also
represent matrices, in our materials we’ll use a cool mathy-looking calligraphic font to
represent events. For instance, we might use the symbol H to refer to the event that a
coin flip comes up heads. It’s important to emphasize that a single random process can
have many associated events. For instance, for the coin flip example we might also define
T to be the event that the coin comes up tails (or U to indicate that event that the coin
rotated at least 10 times in the air when we flipped it).

Further, events don’t necessarily have to be mutually exclusive. For instance, we might
define the event Rh to indicate the event that the Republican party controls the majority
in the House of Representatives following the 2020 election and Ds to indicate the event
that the Democratic party controls the majority in the Senate following the 2020 election.

https://en.wikipedia.org/wiki/Probability_space
https://m.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Probability_space.html
https://m.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Probability_space.html
https://m.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Probability_space.html
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Both (or none) of these events could occur.

2.4 Probability Measure Function

The probability measure function assigns a probability to the occurrence of any particular
event. We can think of this probability measure function as taking as input an event and
outputting a probability. For instance, p(E) provides the probability that event E occurs
according to probability measure p. All probability measure functions must satisfy the
following properties.

• 0 ≤ p(E) ≤ 1: the probability of an event ranges from 0 (an impossible event) to 1 (an
event that will always occur).

• Given a set of n events E1, E2, . . . , En that are disjoint (i.e., no two can occur simulta-
neously)

p(E1 or E2 or . . . or En) =
n∑

i=1
p(Ei) . (1)

The equation above specifies what is sometimes called the union rule of probability. It
states that the probability of one of these disjoint events occurring must be equal to
the sum of the probability of each of the events occurring. You will also sometimes see
Equation 1 written as

p(E1 ∪ E2 ∪ . . . ∪ En) =
n∑

i=1
p(Ei) . (2)

If you’re not familiar with the symbol ∪ it is the symbol for a union of two sets. The
reason you’ll sometimes see this notation is that in the full definition of a probability
space an event is defined as a set (as stated in the margin note earlier in this section,
you need not worry about the most rigorous definition in this course).

• Given a set of (not necessarily disjoint) events E1, E2, . . . , En where at least one of these
n events must occur

p(E1 or E2 or . . . or En) = 1 . (3)

This rule just states that if we have an exhaustive set of events (that cover all possible
cases), at least one of them must occur.

2.5 Complement Rule for Probability

Given the definition of probability detailed above, it follows that if the probability of an
event happening is p(E) then the probability of the event NOT happening is 1 − p(E).
The following are common ways of to express this relationship (we’ll use Equation 4 in
this class). These all say the same thing (the only difference is notation).
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p(¬E) = 1 − p(E) (4)
p(not E) = 1 − p(E)

p(E) = 1 − p(E)
p(E ′) = 1 − p(E)
p(Ec) = 1 − p(E)

We point out these alternate notations not to confuse you (we’d never do that!) but to
help you interpret various external resources you might find on these topics.

Exercise 2 (10 minutes)

Here are some diagnostic questions to make sure that you got the basic ideas.

(a) Suppose E1, E2, E3 are disjoint events. Further, suppose that one of these events
must occur. Which of the following functions are valid probability measure
functions?

p1(E1) =
1
10 , p1(E2) =

1
5 , p1(E3) =

7
10

p2(E1) =
11
10 , p2(E2) =

−1
10 , p2(E3) = 0

p3(E1) =
1
10 , p3(E2) =

1
5 , p3(E3) =

1
2

p4(E1) = 1, p4(E2) = 0, p4(E3) = 0

� Solution
p1 is a valid probability measure function since the probabilities add
up to 1 and all are non-negative. p2 is not a valid probability measure
function since two of the probabilities are outside of the appropriate
range [0, 1]. p3 is not a valid probability measure function since the
probabilities of the three events add up to less than 1. p4 is a valid prob-
ability measure function since the probabilities add to 1 and are in the
appropriate range.
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(b) The Birthday Problem is a well-known probability problem often used in dis-
crete math courses. According to the Wikipedia article on the Birthday Prob-
lem, the probability that at least two students among the 70 students in ma-
chine learning this semester share the same birthday is 0.999. What is the
probability that no two students share the same birthday?

� Solution
Notice that the event no two students share a birthday only happens
when the event at least two students share a birthday does not happen.
Therefore, these events are complements.

p(no two students share a birthday) = 1 − p(¬no two students share a birthday)
= 1 − p(at least two students share a birthday)
= 1 − 0.999
= 0.001

3 Bayes’ Rule

� External Resource(s) (60 minutes)

� Learning Objectives

Note that these learning objectives have been written to be very specific
(based on feedback from the course survey). When you first read them,
you probably won’t know what they mean in detail. As you go through the
readings, hopefully the more precise statement of these learning objectives
will be useful for assessing your understanding of the provided resources.

• When Bayes’ rule is useful (i.e., when p(A|B) is easier to work with than
p(B|A)).

• The idea of a conjoint probability p(A, B) (note: alternate notations
include p(A and B) and p(A ∩ B)).

• The definition of a conditional probability p(A|B) = p(A,B)
p(B)

.

• The equation for the product rule p(A, B) = p(B)p(A|B) = p(A)p(B|A)

(Allen calls this the probability of a conjunction).

• The equation for Bayes’ rule p(A|B) = p(B|A)p(A)
p(B)

.

https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
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Allen Downey (ever heard of him?) wrote an excellent book called Think Bayes
that introduces Bayesian analysis. The first chapter (which you should read) starts
with a less formal definition of probability than the one we gave earlier. The chap-
ter then gives intuitions around conjoint probability (the probability that multiple
events occur simultaneously), conditional probability (the probability that some
event occurs conditioned on another event having occurred), and finally to Bayes’
rule (a surprisingly easy theorem to derive that allows you to write one conditional
probability distribution in terms of another). The Monty Hall problem in section
1.7 is probably okay to skim (see Allen’s note at the end of that section for why
this is the case).

Allen’s treatment of the material is, of course, not the only one out there (we
like it for its focus on building intuition and focusing on the key ideas). Here are
some other resources you might consider checking out (they are optional).

• Khan Academy Video on Bayes’ Theorem shows some simple applications of
Bayes’ rule and explains why it is a convenient way to reason about the proba-
bility of hypothesis given data).

• Veritasium Episode on Bayes’ Theorem has a bit more history and philosophy
of Bayes’ Theorem along with some nice visualizations. It also includes the pre-
senter walking on a very scenic mountain (for some reason), so there’s that if
nothing else.

• Julia Galef’s video A Visual Guide to Bayesian Thinking

• I (Paul) ran across this example of applying Bayes’ rule to a real world prob-
lem. It was created by a grad school friend of mine and is hilarious (lots of Cat
Memes). I did notice that there is a mistake in the math at the 8:12 mark in
the video (he states that p(alarm|no theft) = 1 − p(alarm|theft), which is not
necessarily the case). It’s still a good video though.

Exercise 3 (20 minutes)

� Notice

If you are having trouble dealing with the denominator that you get when
you apply Bayes’ rule, you may want to skip ahead to the section on the
Marginalization Rule for Probabilities and then return to these problems.

(a) You are given three coins. Two are of type 1, we’ll call this type C1, and one is
of type 2, we’ll call this type C2. If you flip a coin of type 1, the coin will come
up heads with probability 4

5 (i.e., p(H|C1) = 4
5 ). If you flip a coin of type 2, the

coin will come up heads with probability 1
2 (i.e., p(H|C2) = 1

2 ). Suppose you
choose one of the three coins (there is no way for you to tell them apart), flip it

http://www.greenteapress.com/thinkbayes/html/thinkbayes002.html
https://www.khanacademy.org/partner-content/wi-phi/wiphi-critical-thinking/wiphi-fundamentals/v/bayes-theorem
https://www.youtube.com/watch?v=R13BD8qKeTg
https://www.youtube.com/watch?v=BrK7X_XlGB8
https://youtube.com/watch?v=nvqXXlz-rx0
https://youtube.com/watch?v=nvqXXlz-rx0
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once, and it comes up heads. What is the probability that you flipped a coin of
type 2 (i.e., what is p(C2|H))? After you compute your answer, compare it with
the probability that a randomly selected coin was of type 2 (before you flipped
it and observed heads). Does the relationship between this prior probability and
the posterior probability make sense?

� Solution

p(C2|H) =
p(H|C2)p(C2)

p(H)
Bayes’ Rule

=
p(H|C2)p(C2)

p(C1)p(H|C1) + p(C2)p(H|C2)
expand denominator

=
1
2 × 1

3
4
5 × 2

3 + 1
2 × 1

3
plug in numbers

= 0.238

The posterior probability (0.238) we computed is less than the prior
probability (1

3 ). This makes sense since a heads is more probable if we
have a coin of type 1, so observing a heads should push our beliefs to-
wards the coin being of type 1.

(b) You train a neural network to identify whether an image contains a picture
of a Chihuahua or a Blueberry Muffin (you know you want to click the link!).
Let’s further assume that there are no images that contain both a muffin and a
Chihuahua (of course as we all know Chihuahuas love muffins). Based on your
project report for module 1, you know that if the image contains a Chihuahua,
your model will identify it as such with probability 0.9. Also, you know that
if the model contains a muffin, your model will identify it as such with proba-
bility 0.8. You now decide to test your model on a dataset which contains 80%
muffins. Assuming that your model predicted that an image contained a muffin,
what is the probability that it actually contains a muffin? (you can assume that
the performance of your model doesn’t change when run on this new dataset).

https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d/
https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d/
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� Solution
Let M represent the event that the image contains a Muffin. Let DM

represent that a muffin was detected in the image.

p(M|DM ) =
p(Dm|M)p(M)

p(DM )
(5)

=
p(Dm|M)p(M)

p(Dm|M)p(M) + p(Dm|¬M)p(¬M)
(6)

=
0.8 × 0.8

0.8 × 0.8 + 0.1 × 0.2 (7)

= 0.97 (8)

4 Marginalization Rule for Probabilities

The application of Bayes’ rule often proceeded according to the following outline. First,
we would define an event we want to reason about. For instance, we might define D as
the event that a person has a disease and S as the event that a particular symptom is
observed. If we want to know p(D|S) we apply Bayes’ rule like so.

p(D|S) = p(S|D)p(D)

p(S)
(9)

In order to calculate p(S), some of the resources simply gave a number (e.g., in the
Khan Academy video the premise was that you Googled to find this value), used a conve-
nient trick to get it (as in Allen’s M&M example), or used the following calculation (as in
the Veritasium and the Car Alarm videos).

p(S) = p(D)p(S|D) + p(¬D)p(S|¬D) (10)

We wanted to revisit this calculation as it is hiding away some pretty powerful and
interesting stuff. This calculation can be derived using the technique of marginalizing a
probability measure function. The basic motivation for this technique is that sometimes
you’d like to compute the probability of some event, A, but it is difficult to do so directly.
Instead you can introduce another event, B, and write p(A) as:

p(A) = p(A, B) + p(A, ¬B) (11)

In the equation above we sometimes say that we are marginalizing out B (by summing
over the two possibilities: that B occurred and that B did not occur).
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Exercise 4 (15 minutes)

Using Equation 11 and the product rule of probability (also called the conjunction
rule), show that Equation 10 is true. Remember that the product rule states that
p(A, B) = p(A)p(B|A) or, equivalently, p(A, B) = p(B)p(A|B).

� Solution

p(S) = p(S, D) + p(S, ¬D) marginalization property, Eq 11
= p(D)p(S|D) + p(¬D)p(S|¬D) product rule

Note that it was up to us what order we applied the product rule. If we
had first split out S when going from line 1 to line 2 of our solution, we
would have been left with p(S)p(D|S) + p(S)p(¬D|S). This move wouldn’t
really make any progress towards a solution (since we still don’t know p(S).
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Figure 1: A tree diagram of the
events D (has a disease) and S
(has a symptom).

Another way to think about marginalization is to draw a tree where you have the
event, which you are marginalizing out (D in the previous exercise) at the first level of
the tree and the variable you want to know the probability of (S in the previous exercise)
at the next junction in the tree (see Figure 1).

Further, we annotate the arrows with the conditional probability of the event condi-
tioned on the things further up in the tree (note that for D there is nothing further up
the tree, so we just write p(D) or p(¬D)).
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<latexit sha1_base64="s0ORvqxeEX0PpYtJdKPahu55m4g=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2gdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJp1H3LuqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPjPaRbQ==</latexit>

p(D)
<latexit sha1_base64="tQajZXOuGhtmmwHDT/muLdnLC8Y=">AAAB9XicbVDLSsNAFL2pr1pfUZduBotQNyWpgi6LunBZwT6gjWUynbRDJ5MwM1FK6H+4caGIW//FnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VYWV1b3yhulra2d3b37P2DlooSSWiTRDySHR8rypmgTc00p51YUhz6nLb98XXmtx+pVCwS93oSUy/EQ8ECRrA20kNc6YVYjwjm6c30tG+XnaozA1ombk7KkKPRt796g4gkIRWacKxU13Vi7aVYakY4nZZ6iaIxJmM8pF1DBQ6p8tJZ6ik6McoABZE0T2g0U39vpDhUahL6ZjLLqBa9TPzP6yY6uPRSJuJEU0Hmh4KEIx2hrAI0YJISzSeGYCKZyYrICEtMtCmqZEpwF7+8TFq1qntWrd2dl+tXeR1FOIJjqIALF1CHW2hAEwhIeIZXeLOerBfr3fqYjxasfOcQ/sD6/AEVvZI9</latexit>

p(S|D)
<latexit sha1_base64="nBKy7kwPyiCeYvGdnFdyh3FAOAI=">AAACA3icbZDLSsNAFIZP6q3WW9SdbgaLUDclqYIui7pwWdFeoA1lMp22QycXZiZCiQE3voobF4q49SXc+TZO2iDa+sPAx3/OYc753ZAzqSzry8gtLC4tr+RXC2vrG5tb5vZOQwaRILROAh6Ilosl5cyndcUUp61QUOy5nDbd0UVab95RIVng36pxSB0PD3zWZwQrbXXNvbDU8bAaEszjm+T+hy+To65ZtMrWRGge7AyKkKnWNT87vYBEHvUV4VjKtm2FyomxUIxwmhQ6kaQhJiM8oG2NPvaodOLJDQk61E4P9QOhn6/QxP09EWNPyrHn6s50RzlbS83/au1I9c+cmPlhpKhPph/1I45UgNJAUI8JShQfa8BEML0rIkMsMFE6toIOwZ49eR4albJ9XK5cnxSr51kcediHAyiBDadQhSuoQR0IPMATvMCr8Wg8G2/G+7Q1Z2Qzu/BHxsc3OMuX4w==</latexit>

p(¬S|D)
<latexit sha1_base64="MMi8/UbFW8dwKcdHhSf36dSBtEw=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY1IPHivYDtkvJptk2NJssSVYotT/DiwdFvPprvPlvTNs9aOuDgcd7M8zMCxPOtHHdbye3srq2vpHfLGxt7+zuFfcPmlqmitAGkVyqdog15UzQhmGG03aiKI5DTlvh8Hrqtx6p0kyKBzNKaBDjvmARI9hYyU/KHUH76P7p5rRbLLkVdwa0TLyMlCBDvVv86vQkSWMqDOFYa99zExOMsTKMcDopdFJNE0yGuE99SwWOqQ7Gs5Mn6MQqPRRJZUsYNFN/T4xxrPUoDm1njM1AL3pT8T/PT010GYyZSFJDBZkvilKOjETT/1GPKUoMH1mCiWL2VkQGWGFibEoFG4K3+PIyaVYr3lmlendeql1lceThCI6hDB5cQA1uoQ4NICDhGV7hzTHOi/PufMxbc042cwh/4Hz+ABM6kHY=</latexit>

p(¬S|¬D)
<latexit sha1_base64="US+UKSw2PmbcCKMYOmo1pwaECUw=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiCVpUoKEowVMDAWQR9SE1WO67RWHSeyHaQq5AdY+BUWBhBiZWfjb3DaDLTlSFc6Oude3XuPFzEqlWX9GIWl5ZXVteJ6aWNza3vH3N1ryTAWmDRxyELR8ZAkjHLSVFQx0okEQYHHSNsbXWV++4EISUN+r8YRcQM04NSnGCkt9cyjqOJwMoBOgNQQI5bcpY+zwnV60jPLVtWaAC4SOydlkKPRM7+dfojjgHCFGZKya1uRchMkFMWMpCUnliRCeIQGpKspRwGRbjL5JoXHWulDPxS6uIIT9e9EggIpx4GnO7Mb5byXif953Vj5F25CeRQrwvF0kR8zqEKYRQP7VBCs2FgThAXVt0I8RAJhpQMs6RDs+ZcXSatWtU+rtduzcv0yj6MIDsAhqAAbnIM6uAEN0AQYPIEX8AbejWfj1fgwPqetBSOf2QczML5+AUotm7M=</latexit>

p(S|¬D)
<latexit sha1_base64="GhLv0u/FUaVaCEDU/jePvoF2LKo=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbkpSBV0WdeGyon1AE8pkOmmHTiZhZiKUmKUbf8WNC0Xc+gnu/BsnbRBtPXDhcM693HuPFzEqlWV9GYWFxaXlleJqaW19Y3PL3N5pyTAWmDRxyELR8ZAkjHLSVFQx0okEQYHHSNsbXWR++44ISUN+q8YRcQM04NSnGCkt9cz9qOIESA0xYslNeu9wMoA/wmV61DPLVtWaAM4TOydlkKPRMz+dfojjgHCFGZKya1uRchMkFMWMpCUnliRCeIQGpKspRwGRbjJ5JIWHWulDPxS6uIIT9fdEggIpx4GnO7Mb5ayXif953Vj5Z25CeRQrwvF0kR8zqEKYpQL7VBCs2FgThAXVt0I8RAJhpbMr6RDs2ZfnSatWtY+rteuTcv08j6MI9sABqAAbnII6uAIN0AQYPIAn8AJejUfj2Xgz3qetBSOf2QV/YHx8A79Jmcs=</latexit>

¬S
<latexit sha1_base64="JEtjgEzqoUwMzquQVnbeDALCeWw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjNV0GXRjcuK9gGdoWTS2zY0kxmSTKEM/RM3LhRx65+4829MHwttPRA4nHMv9+REqeDaeN63s7a+sbm1Xdgp7u7tHxy6R8cNnWSKYZ0lIlGtiGoUXGLdcCOwlSqkcSSwGQ3vpn5zhErzRD6ZcYphTPuS9zijxkod1w0k9kkQUzNgVOSPk45b8sreDGSV+AtSggVqHfcr6CYsi1EaJqjWbd9LTZhTZTgTOCkGmcaUsiHtY9tSSWPUYT5LPiHnVumSXqLsk4bM1N8bOY21HseRnZxG1MveVPzPa2emdxPmXKaZQcnmh3qZICYh0xpIlytkRowtoUxxm5WwAVWUGVtW0ZbgL395lTQqZf+yXHm4KlVvF3UU4BTO4AJ8uIYq3EMN6sBgBM/wCm9O7rw4787HfHTNWeycwB84nz9sh5OG</latexit>

¬S
<latexit sha1_base64="JEtjgEzqoUwMzquQVnbeDALCeWw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjNV0GXRjcuK9gGdoWTS2zY0kxmSTKEM/RM3LhRx65+4829MHwttPRA4nHMv9+REqeDaeN63s7a+sbm1Xdgp7u7tHxy6R8cNnWSKYZ0lIlGtiGoUXGLdcCOwlSqkcSSwGQ3vpn5zhErzRD6ZcYphTPuS9zijxkod1w0k9kkQUzNgVOSPk45b8sreDGSV+AtSggVqHfcr6CYsi1EaJqjWbd9LTZhTZTgTOCkGmcaUsiHtY9tSSWPUYT5LPiHnVumSXqLsk4bM1N8bOY21HseRnZxG1MveVPzPa2emdxPmXKaZQcnmh3qZICYh0xpIlytkRowtoUxxm5WwAVWUGVtW0ZbgL395lTQqZf+yXHm4KlVvF3UU4BTO4AJ8uIYq3EMN6sBgBM/wCm9O7rw4787HfHTNWeycwB84nz9sh5OG</latexit>

¬D
<latexit sha1_base64="Qq8EuVAQnOxzHaMUDYGwNpM+A/4=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjNV0GVRFy4r2Ae0Q8mkd9rQTGZIMoUy9E/cuFDErX/izr8xfSy09UDgcM693JMTpoJr43nfztr6xubWdmGnuLu3f3DoHh03dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8m/rNESrNE/lkxikGMe1LHnFGjZW6rtuR2CedmJoBoyK/n3Tdklf2ZiCrxF+QEixQ67pfnV7CshilYYJq3fa91AQ5VYYzgZNiJ9OYUjakfWxbKmmMOshnySfk3Co9EiXKPmnITP29kdNY63Ec2slpRL3sTcX/vHZmopsg5zLNDEo2PxRlgpiETGsgPa6QGTG2hDLFbVbCBlRRZmxZRVuCv/zlVdKolP3LcuXxqlS9XdRRgFM4gwvw4Rqq8AA1qAODETzDK7w5ufPivDsf89E1Z7FzAn/gfP4AVbyTdw==</latexit>

p(¬D)
<latexit sha1_base64="xFmlBsf2VbvGdG0Nb4vlqghC5Y8=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyWpgi6LunBZwT6gCWUyvWmHTiZhZiKUUH/FjQtF3Poh7vwbp20W2npg4HDOvdwzJ0g4U9pxvq3C2vrG5lZxu7Szu7d/YB8etVWcSgotGvNYdgOigDMBLc00h24igUQBh04wvpn5nUeQisXiQU8S8CMyFCxklGgj9e1yUvUEDLEXET2ihGe307O+XXFqzhx4lbg5qaAczb795Q1imkYgNOVEqZ7rJNrPiNSMcpiWvFRBQuiYDKFnqCARKD+bh5/iU6MMcBhL84TGc/X3RkYipSZRYCZnGdWyNxP/83qpDq/8jIkk1SDo4lCYcqxjPGsCD5gEqvnEEEIlM1kxHRFJqDZ9lUwJ7vKXV0m7XnPPa/X7i0rjOq+jiI7RCaoiF12iBrpDTdRCFE3QM3pFb9aT9WK9Wx+L0YKV75TRH1ifP/polFY=</latexit>

If you want to find a joint probability (e.g., p(D, ¬S)), follow the corresponding path,
multiplying probabilities as you go. For example, from examining the graph above we get

p(D, ¬S) = p(D)p(¬S|D) . (12)

A marginal probability for an event (e.g., p(S)) can be found by summing over all
paths that arrive at the event. For example, from examining the graph above we see that
there are two paths to S, which allows us to compute p(S) as

p(S) = p(D)p(S|D) + p(¬D)p(S|¬D) . (13)
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Exercise 5 (20 minutes)

Do problem 2 from this assignment. They use E ′ to refer to the event ¬E .

� Solution
Solution is embedded in the link.

http://wwwf.imperial.ac.uk/~atw/Bayes.pdf
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